Examinando por Autor "Alvarado, Wigoberto"
Mostrando 1 - 4 de 4
- Resultados por página
- Opciones de ordenación
Ítem Age-dependent changes in protist and fungal microbiota in a peruvian cattle genetic nucleus(MDPI, 2024-08-14) Estrada Cañari, Richard; Romero Avila, Yolanda Madelein; Quilcate Pairazamán, Carlos Enrique; Dipaz Berrocal, Deisy Juana; Alejos Asencio, Carol Silvia; Leon Trinidad, Silvia Eliana; Alvarez García, Wesley Yusmein; Rojas, Diorman; Alvarado, Wigoberto; Maicelo Quintana, Jorge Luis; Arbizu, Carlos IrvinIn this research, the connection between age and microbial diversity in cattle was explored, revealing significant changes in both protist diversity and fungal microbiota composition with age. Using fecal samples from 21 Simmental cattle, microbial communities were analyzed through 18S rRNA gene sequencing. Results indicated significant differences in alpha protist diversity among the three age groups, while fungal composition varied notably with age and was linked to hematological parameters. Despite the stability of fungal alpha diversity, compositional changes suggest the gut as a stable niche for microbial colonization influenced by diet, clinical parameters, and microbial interactions. All cattle were maintained on a consistent diet, tailored to meet the specific nutritional needs of each age group. These findings emphasize the importance of understanding age-related microbial dynamics to enhance livestock management and animal health, contributing to broader ecological and biomedical research. This study was limited by the lack of comprehensive metabolic analyses correlating microbiota changes with specific age-related variations, indicating a need for further research in this área.Ítem Complete mitogenome of “pumpo” (Bos taurus), a top bull from a Peruvian genetic nucleus, and its phylogenetic analysis(MDPI, 2024-05-28) Estrada Cañari, Richard; Figueroa Venegas, Deyanira Antonella; Romero Avila, Yolanda; Alvarez García, Wuesley Yusmein; Rojas Cruz, Diorman; Alvarado, Wigoberto; Maicelo, Jorge L.; Quilcate Pairazamán, Carlos Enrique; Arbizu Berrocal, Carlos IrvinThe mitochondrial genome of Pumpo (Bos taurus), a prominent breed contributing to livestock farming, was sequenced using the Illumina HiSeq 2500 platform. Assembly and annotation of the mitochondrial genome were achieved through a multifaceted approach employing bioinformatics tools such as Trim Galore, SPAdes, and Geseq, followed by meticulous manual inspection. Additionally, analyses covering tRNA secondary structure and codon usage bias were conducted for comprehensive characterization. The 16,341 base pair mitochondrial genome comprises 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. Phylogenetic analysis places Pumpo within a clade predominantly composed of European cattle, reflecting its prevalence in Europe. This comprehensive study underscores the importance of mitochondrial genome analysis in understanding cattle evolution and highlights the potential of genetic improvement programs in livestock farming, thus contributing to enhanced livestock practices.Ítem Effects of age in fecal microbiota and correlations with blood parameters in genetic nucleus of cattle(MDPI, 2024-06-29) Estrada Cañari, Richard; Romero Avila, Yolanda Madelein; Figueroa Venegas, Deyanira Antonella; Coila, Pedro; Hañari Quispe, Renán Dilton; Aliaga, Mery; Galindo, Walter; Alvarado, Wigoberto; Casanova Nuñez-Melgar, David Pavel; Quilcate Pairazamán, Carlos EnriqueThis study aimed to determine the impact of age on the fecal microbiota in the genetic nucleus of cattle, with a focus on microbial richness, composition, functional diversity, and correlations with blood parameters. Fecal and blood samples from 21 cattle were analyzed using 16S rRNA gene sequencing. Older cattle exhibited greater bacterial diversity and abundance, with significant changes in alpha diversity indices (p < 0.05). Beta diversity analysis revealed significant variations in microbial composition between age groups and the interaction of age and sex (p < 0.05). Correlations between alpha diversity, community composition, and hematological values highlighted the influence of microbiota on bovine health. Beneficial butyrate-producing bacteria, such as Ruminococcaceae, were more abundant in older cattle, suggesting a role in gut health. Functional diversity analysis indicated that younger cattle had significantly more abundant metabolic pathways in fermentation and anaerobic chemoheterotrophy. These findings suggest management strategies including tailored probiotic therapies, dietary adjustments, and targeted health monitoring to enhance livestock health and performance. Further research should include comprehensive metabolic analyses to better correlate microbiota changes with age-related variations, enhancing understanding of the complex interactions between microbiota, age, and reproductive status.Ítem Parasitism-induced changes in microbial eukaryotes of Peruvian alpaca gastrointestinal tract(MDPI, 2024-01-27) Sanchez, Diana; Zapata, Celso; Romero Avila, Yolanda; Flores Huarco, Nils H.; Oros, Oscar; Alvarado, Wigoberto; Quilcate Pairazamán, Carlos Enrique; Guevara Alvarado, Hada M.; Estrada Cañari, Richard; Coila, PedroAlpacas, important genetic resources in the Andean region of Peru, are vulnerable to diarrhea caused by pathogenic parasites such as Eimeria lamae and Giardia sp., which can be fatal, especially in neonates, due to their physiological immaturity and limited adaptability. The study investigated the diversity and abundance of intestinal fungi and protists in alpacas infected with Eimeria lamae and Giardia sp. compared to healthy alpacas. A total of 19 alpacas, aged between one and two months, were included. They were divided into two groups, one with pathological conditions (nine) and the other healthy (ten). Parasitological analyses for the detection of parasites and subsequent molecular analysis were performed on the collected fecal samples. The results revealed a greater diversity and abundance of protists in infected alpacas in comparison with healthy alpacas, while the fungal composition did not show significant changes. Therefore, parasitic infections affect the protist component of the alpaca gut microbiota. Also, it was observed that Blastocystis was identified in all healthy alpacas, serving as a possible marker of the health of the intestinal microbiota; in addition, Prussia and Pichia are beneficial fungi that help control diseases. This groundbreaking study in neonatal alpacas is the first to explore potential changes in the intestinal microbiota during an infectious state, underscoring the importance of further research to comprehend its effects on alpaca health and immune responses.