Examinando por Autor "Amelung, Wulf"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Co-benefits of soil carbon protection for invertebrate conservation(EL SEVIER, 2020-11-13) Flores Rios, Angelli; Thomas, Evert; Peri, Pablo P.; Amelung, Wulf; Duarte Guardia, Sandra; Borchard, Nils; Lizárraga Travaglini, Alfonso Diulio; Vélez Azañero, Armando; Sheil, Douglas; Tscharntke, Teja; Steffan Dewenter, Ingolf; Ladd, BrentonThe global decline in invertebrate diversity requires urgent conservation interventions. However, identifying priority conservation areas for invertebrates remains a significant challenge. We hypothesized that aligning the conservation of invertebrate biodiversity with climate change mitigation ofer offers a solution. As both soil carbon storage and invertebrate biodiversity are positively influenced by plant diversity and productivity, a positive correlation can also be expected between SOC and invertebrate biodiversity. Drawing on >10,000 invertebrate observations organized into functional groups, and site-specific soil organic Carbon (SOC) measurements from Patagonia, the Peruvian Andes, and montane tropical rainforest, we examined the role of climate, soil, topographical position and land use for prediction of invertebrate biodiversity. We found that taxonomic and functional invertebrate diversity and abundance closely correlate with SOC stocks within ecosystems. Topographical position of sites, which was partly associated with SOC, was also important, whereas land use was of subordinate importance. We conclude that recent advances in predicting and mapping SOC can guide the identification of habitats within landscapes with high biodiversity and conservation value for invertebrates. Our findings stress the importance of linking global climate change mitigation initiatives that aim to preserve and restore SOC to efforts aimed at improving the conservation of invertebrates and the ecosystem services they provide, for the realization of mutual climate and biodiversity benefits.Ítem Precipitation is the key determinant of topsoil δ15N values in southern Patagonia's semiarid rangelands(Soil Science Society of America, 2022-02-11) Peri, Pablo L.; Duarte Guardia, Sandra; Amelung, Wulf; Ladd, BrentonNitrogen (N) cycling in rangeland soils could potentially be controlled by water supply, stocking rates, or a range of other variables, such as ecosystem N stocks. To gauge the relative importance and elucidate possible interactions among these factors, we measured many abiotic variables to identify first-order controls of δ15N for Patagonia's rangeland soils under contrasting historical grazing intensities. The results showed that δ15N values declined as water availability increased. The effects of precipitation and stocking rate on soil δ15N values were additive, and the effect of precipitation far outweighed the effects of grazing pressure. The soil N stock was a weak predictive variable for modeling variation in δ15N of the soil. Earlier assumptions about an inflection point for N cycling and δ15N values related to aridity were not confirmed. We conclude that variation in water availability drives variation in δ15N values irrespective of grazing intensity. We also conclude that meaningful interpretation of δ15N in soil will require a better mechanistic understanding of the interactions between water and N in the vadose zone than we currently possess.