Examinando por Autor "Ramírez, David A."
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem Canopy temperature as a key physiological trait to improve yield prediction under water restrictions in potato(MDPI, 2021-07-20) Ninanya, Johan; Ramírez, David A.; Rinza, Javier; Silva-Díaz, Cecilia; Cervantes, Marcelo; García, Jerónimo; Quiroz, RobertoCanopy temperature (CT) as a surrogate of stomatal conductance has been highlighted as an essential physiological indicator for optimizing irrigation timing in potatoes. However, assessing how this trait could help improve yield prediction will help develop future decision support tools. In this study, the incorporation of CT minus air temperature (dT) in a simple ecophysiological model was analyzed in three trials between 2017 and 2018, testing three water treatments under drip (DI) and furrow (FI) irrigations. Water treatments consisted of control (irrigated until field capacity) and two-timing irrigation based on physiological thresholds (CT and stomatal conductance). Two model perspectives were implemented based on soil water balance (P1) and using dT as the penalizing factor (P2), affecting the biomass dynamics and radiation use efficiency parameters. One of the trials was used for model calibration and the other two for validation. Statistical indicators of the model performance determined a better yield prediction at harvest for P2, especially under maximum stress conditions. The P1 and P2 perspectives showed their highest coefficient of determination (R2) and lowest root-mean-squared error (RMSE) under DI and FI, respectively. In the future, the incorporation of CT combining low-cost infrared devices/sensors with spatial crop models, satellite image information, and telemetry technologies, an adequate decision support system could be implemented for water requirement determination and yield prediction in potatoes.Ítem Unraveling ecophysiological mechanisms in potatoes under different irrigation methods: a preliminary field evaluation(MDPI, 2020-06-11) Silva Díaz, Cecilia; Ramírez, David A.; Rodríguez Delfín, Alfredo; De Mendiburu, Felipe; Rinza, Javier; Ninanya, Johan; Loayza, Hildo; Quiroz, RobertoPotatoes—a global food security and staple crop—is threatened by dry spells in drought-prone areas. The use of physiological thresholds to save water while maintaining a reasonable tuber yield has been proposed, but their effects on physiological performances and usefulness under different irrigation methods are yet to be evaluated. In this study, photosynthetic traits were monitored to assess the effect of water restriction and rewatering under drip (DI) and furrow (FI) irrigations. The treatments consisted of two maximum light-saturated stomatal conductance (g𝑠_𝑚𝑎𝑥) irrigation thresholds (T2: 0.15 and T3: 0.05 mol H2O m−2 s−1) compared with a fully irrigated control (g𝑠_𝑚𝑎𝑥 > 0.3 mol H2O m−2 s−1). DI used less water than FI but promoted early senescence and low percentage of maximum assimilation rate (PMA) at late developmental stages. FI caused no yield penalization in T2 and higher recovery of carbon isotope discrimination and PMA than DI. It is suggested that moderate water quantities of early and frequently water pulses in the irrigation, promote short-term water stress memory improvement, senescence delay and more capability of recovery at late stages.Ítem Water saving using thermal imagery-based thresholds for timing irrigation in potatoes under drip and furrow irrigation systems(MDPI, 2022-11-23) Rinza, Javier; Ramírez, David A.; Ninanya, Johan; De Mendiburu, Felipe; García, Jerónimo; Quiroz, RobertoUnder the current water crisis in agriculture, irrigation methods for saving and conserving water are necessary. However, these methods must guarantee an appropriate yield with a concomitant economic benefit and a reduced environmental impact. In this study, two irrigation thresholds for irrigation timing (IT) based on thermal imagery were analyzed with the UNICA potato variety in three trials under drip (DI) and furrow (FI) irrigation during 2017–2018 in Lima, Peru. The control (T1) remained at >70% of soil field capacity. For other treatments, thresholds were defined based on stomatal conductance at light saturation (T2: 0.15 and T3: 0.05 mol H2O m−2 s−1) and crop water stress index (T2: 0.4 and T3: 0.6) based on canopy temperature. An integrated index (IIN) was established for the valuation of treatments using the criteria of high fresh tuber yield (FTY) and a low total amount of irrigated water, production cost (PC), and total C emissions (TE) and using criteria of a score. FI-T2 (0.69–0.72) and DI-T3 (0.19–0.29) showed the highest and lowest IIN value, respectively. FTY in T2 was not significantly reduced under FI, resulting in a lower PC regarding DI–T2 and emphasizing the usefulness of thermal imagery in determining watering schedules in potatoes under furrow irrigation systems.