Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley

dc.contributor.authorPizarro Carcausto, Samuel
dc.contributor.authorVera Vilchez, Jesús
dc.contributor.authorHuamani, Joseph
dc.contributor.authorCruz, Juancarlos
dc.contributor.authorLastra, Sphyros
dc.contributor.authorSolórzano Acosta, Richard
dc.contributor.authorVerástegui Martínez, Patricia
dc.date.accessioned2024-07-12T04:47:13Z
dc.date.available2024-07-12T04:47:13Z
dc.date.issued2024-03-29
dc.description.abstractQuality and safety of the soil are essential to ensure social and economic development and provides the supply of contaminant free food. With agriculture intensification, expansion of urban zones, construction of roads, and mining, some agricultural soils sites become polluted increasing environmental risks to ecosystems functions and human health. Hence the need know the spatial distribution of elements in soils, we mapped 25 elements, namely Ca, Mg, Sr, Ba, Be, K, Na, As, Sb, Se, Tl, Cd, Zn, Al, Pb, Hg, Cr, Ni, Cu, Mo, Ag, Fe, Co, Mn and V, using various geospatial datasets, such as remote sensing, climate, topography, soil data, and distance, to establish the spatial estimation models of spatial distribution trained trough machine learning model with a supervised dataset of 109 topsoil samples, into Google earth engine platform. Using R2, RMSE and MAE to assess the prediction accuracy. First Random Forest gave satisfactory results in predicting the distribution of analyzed elements in soil, being improved for some elements when adds more trees. Additionally, each element analyzed has a different combination of environmental covariates as predictor, mainly soil, climate, topographic and distance variables especially croplands close to rivers, with less importance for spectral variables. Our results suggest that is possible to identify polluted soils and improved regulations to minimize harm to environmental health and human health, for short-to-medium-term environmental risk control.es_PE
dc.formatapplication/pdfes_PE
dc.identifier.citationPizarro-Carcausto, S.; Vera-Vilchez, J.; Huamani, J.; Cruz, J.; Lastra, S.; Solórzano-Acosta, R.; Verástegui-Martínez, P. (2024). Digital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valley. SSRN. doi: 10.2139/ssrn.4777607es_PE
dc.identifier.doihttp://dx.doi.org/10.2139/ssrn.4777607
dc.identifier.issn1556-5068
dc.identifier.urihttps://hdl.handle.net/20.500.12955/2537
dc.language.isoenges_PE
dc.publisherElsevieres_PE
dc.publisher.countryUSes_PE
dc.relation.ispartofurn:issn: 1556-5068es_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/es_PE
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectRandom Forestes_PE
dc.subjectSoil mappinges_PE
dc.subjectGoogle Earth Enginees_PE
dc.subjectMachine learninges_PE
dc.subjectCloud computinges_PE
dc.subject.agrovocAlgorithmses_PE
dc.subject.agrovocAlgoritmoes_PE
dc.subject.agrovocSoil surveyses_PE
dc.subject.agrovocReconocimiento de sueloses_PE
dc.subject.agrovocSpatial dataes_PE
dc.subject.agrovocDatos espacialeses_PE
dc.subject.agrovocMachine learninges_PE
dc.subject.agrovocAprendizaje automáticoes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.04es_PE
dc.titleDigital soil mapping of metals and metalloids in croplands using multiple geospatial data and machine learning, implemented in GEE, for the Peruvian Mantaro Valleyes_PE
dc.typeinfo:eu-repo/semantics/workingPaperes_PE

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Pizarro_et-al_2024_metals_mapping.pdf
Tamaño:
5.63 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: [email protected]

© Instituto Nacional de Innovación Agraria - INIA