Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru

dc.contributor.authorGoigochea Pinchi, Diego
dc.contributor.authorJustino Pinedo, Maikol
dc.contributor.authorVega Herrera, Sergio Sebastian
dc.contributor.authorSanchez Ojanasta, Martín
dc.contributor.authorLobato Galvez, Roiser Honorio
dc.contributor.authorSantillan Gonzales, Manuel Dante
dc.contributor.authorGanoza Roncal, Jorge Juan
dc.contributor.authorOre Aquino, Zoila Luz
dc.contributor.authorAgurto Piñarreta, Alex Iván
dc.date.accessioned2024-08-28T05:38:27Z
dc.date.available2024-08-28T05:38:27Z
dc.date.issued2024-08-20
dc.description.abstractRice is cataloged as one of the most widely cultivated crops globally, providing food for a large proportion of the global population. Integrating Geographic Information Systems (GISs), such as unmanned aerial vehicles (UAVs), into agricultural practices offers numerous benefits. UAVs, equipped with imaging sensors and geolocation technology, enable precise crop monitoring and management, enhancing yield and efficiency. However, Peru lacks sufficient experience with the application of these technologies, making them somewhat unfamiliar in the context of modern agriculture. In this study, we conducted experiments involving four distinct rice varieties (n = 24) at various stages of growth to predict yield using vegetation indices (VIs). A total of nine VIs (NDVI, GNDVI, ReCL, CIgreen, MCARI, SAVI, CVI, LCI, and EVI) were assessed across four dates: 88, 103, 116, and 130 days after sowing (DAS). Pearson correlation analysis, principal component analysis (PCA), and multiple linear regression were used to build prediction models. The results showed a general prediction model (including all the varieties) with the best performance at 130 days after sowing (DAS) using NDVI, EVI, and SAVI, with a coefficient of determination (adjusted-R2 = 0.43). The prediction models by variety showed the best performance for Esperanza at 88 DAS (adjusted-R2 = 0.94) using EVI as the vegetation index. The other varieties showed their best performance using different indices at different times: Capirona (LCI and CIgreen, 130 DAS, adjusted-R2 = 0.62); Conquista Certificada (MCARI, 116 DAS, R2 = 0.52); and Conquista Registrada (CVI and LCI, 116 DAS, adjusted-R2 = 0.79). These results provide critical information for optimizing rice crop management and support the use of unmanned aerial vehicles (UAVs) to inform timely decision making and mitigate yield losses in Peruvian agriculture.es_PE
dc.description.sponsorshipThis research was funded by the project “Creación del servicio de agricultura de precisión en los Departamentos de Lambayeque, Huancavelica, Ucayali y San Martín” of the Instituto Nacional de Innovación Agraria (INIA), which is part of the Ministerio de Desarrollo Agrario y Riego (MIDAGRI) of the Peruvian Government, with grant number CUI 2449640.es_PE
dc.formatapplication/pdfes_PE
dc.identifier.citationGoigochea-Pinchi, D.; Justino-Pinedo, M.; Vega-Herrera, S.S.; Sanchez-Ojanasta, M.; Lobato-Galvez, R.H.; Santillan-Gonzales, M.D.; Ganoza-Roncal, J.J.; Ore-Aquino, Z.L. & Agurto-Piñarreta, A.I. (2024). Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru. AgriEngineering, 6(3), 2955-2969. doi:10.3390/agriengineering6030170es_PE
dc.identifier.doihttps://doi.org/10.3390/agriengineering6030170
dc.identifier.issn2624-7402
dc.identifier.urihttps://hdl.handle.net/20.500.12955/2561
dc.language.isoenges_PE
dc.publisherMDPIes_PE
dc.publisher.countryCHes_PE
dc.relation.ispartofurn:issn:2624-7402es_PE
dc.relation.ispartofseriesAgriEngineeringes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectMultiple regressionses_PE
dc.subjectRemote Sensinges_PE
dc.subjectPrecision agriculturees_PE
dc.subjectRPASes_PE
dc.subjectDroneses_PE
dc.subjectSan Martines_PE
dc.subjectOryza sativaes_PE
dc.subject.agrovocRegression analysises_PE
dc.subject.agrovocAnálisis de la regresiónes_PE
dc.subject.agrovocRemote sensinges_PE
dc.subject.agrovocTeledetecciónes_PE
dc.subject.agrovocPrecision agriculturees_PE
dc.subject.agrovocAgricultura de precisiónes_PE
dc.subject.agrovocUnmanned aerial vehicleses_PE
dc.subject.agrovocVehículo aéreo no tripuladoes_PE
dc.subject.agrovocOryza sativaes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.01es_PE
dc.titleYield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Perues_PE
dc.typeinfo:eu-repo/semantics/articlees_PE

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Goicochea_et-al_2024_Yield_Prediction_Rice.pdf
Tamaño:
4.93 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: [email protected]

© Instituto Nacional de Innovación Agraria - INIA