Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging

dc.contributor.authorUrquizo Barrera, Julio Cesar
dc.contributor.authorCcopi Trucios, Dennis
dc.contributor.authorOrtega Quispe, Kevin
dc.contributor.authorCastañeda Tinco, Italo
dc.contributor.authorPatricio Rosales, Solanch
dc.contributor.authorPassuni Huayta, Jorge
dc.contributor.authorFigueroa Venegas, Deyanira
dc.contributor.authorEnriquez Pinedo, Lucia
dc.contributor.authorOre Aquino, Zoila
dc.contributor.authorPizarro Carcausto, Samuel
dc.date.accessioned2024-10-24T17:07:01Z
dc.date.available2024-10-24T17:07:01Z
dc.date.issued2024-10-06
dc.description.abstractAccurate and timely estimation of oat biomass is crucial for the development of sustainable and efficient agricultural practices. This research focused on estimating and predicting forage oat biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera was used for 14 flights, capturing 21 spectral indices per flight. Concurrently, agronomic data were collected at six stages synchronized with UAV flights. Data analysis involved correlations and Principal Component Analysis (PCA) to identify significant variables. Predictive models for forage biomass were developed using various machine learning techniques: linear regression, Random Forests (RFs), Support Vector Machines (SVMs), and Neural Networks (NNs). The Random Forest model showed the best performance, with a coefficient of determination R2 of 0.52 on the test set, followed by Support Vector Machines with an R2 of 0.50. Differences in root mean square error (RMSE) and mean absolute error (MAE) among the models highlighted variations in prediction accuracy. This study underscores the effectiveness of photogrammetry, UAV, and machine learning in estimating forage biomass, demonstrating that the proposed approach can provide relatively accurate estimations for this purpose.es_PE
dc.description.sponsorshipThis research was funded by the project “Creación del servicio de agricultura de precision en los Departamentos de Lambayeque, Huancavelica, Ucayali y San Martín 4 Departamentos” of the Ministry of Agrarian Development and Irrigation (MIDAGRI) of the Peruvian Government with grant number CUI 2449640.es_PE
dc.formatapplication/pdfes_PE
dc.identifier.citationUrquizo-Barrera, J.; Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Patricio-Rosales, S.; Passuni-Huayta, J.; Figueroa-Venegas, D.; Enriquez-Pinedo, L.; Ore-Aquino, Z.; & Pizarro-Carcausto, S. (2024). Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging. Remote sensing,16, 3720. doi:10.3390/rs16193720es_PE
dc.identifier.doihttps://doi.org/10.3390/rs16193720
dc.identifier.issn2072-4292
dc.identifier.urihttps://hdl.handle.net/20.500.12955/2599
dc.language.isoenges_PE
dc.publisherMDPIes_PE
dc.publisher.countryCHes_PE
dc.relation.ispartofurn:issn:2072-4292es_PE
dc.relation.ispartofseriesRemote sensinges_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectGermination ratees_PE
dc.subjectMachine learninges_PE
dc.subjectRemote sensinges_PE
dc.subjectPhotogrammetryes_PE
dc.subjectVegetation indiceses_PE
dc.subject.agrovocGerminabilityes_PE
dc.subject.agrovocPoder germinativoes_PE
dc.subject.agrovocMachine learninges_PE
dc.subject.agrovocAprendizaje automaticoes_PE
dc.subject.agrovocRemote sensinges_PE
dc.subject.agrovocTeledetecciones_PE
dc.subject.agrovocPhotogrammetryes_PE
dc.subject.agrovocFotogrametríaes_PE
dc.subject.agrovocVegetation indexes_PE
dc.subject.agrovocÍndice de vegetaciónes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.06es_PE
dc.titleEstimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaginges_PE
dc.typeinfo:eu-repo/semantics/articlees_PE

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Urquizo_et-al_2024_estimation_oat_UAV.pdf
Tamaño:
8.13 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: [email protected]

© Instituto Nacional de Innovación Agraria - INIA